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Cooling devices for dense array CPV receivers require high | o |
compactness, low average temperature and high temperature High compactness D Liquid cooling

uniformity to avoid mismatch losses.
This study compares the impact of a conventional microchannel
cooling device with the matrix of microfluidic cells with
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. CONCLUSIONS:

« The advances in Concentration PV cell technology imply the
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= | I increase of the Fill Factor and, therefore, lead to higher impacts of
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= oy the mismatch losses associated to the CPV receiver’'s temperature

O = - ~ B . non uniformities.

R G = = » The matrix of microfluidic cells with individually variable coolant flow

S’E\ % 5 % 5 " rate is able to provide high temperature uniformities under time

qg’ — O - 2 dependent and non uniform heat loads.

O : ! Global power generation of microchannels and microfluidic

- cells are respectively 72.6% and 79.7% with respect to the sum of
" e " the ideal isolated cells production at the same illumination and

y ” temperature conditions.

O 2 @  Power generation applying the microfluidic cells cooling device is

% 2 %; 9.7% higher than the one with conventional microchannel

?% % . % y technology (at equal average temperature).
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