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Thermal viability on advanced ICs 
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• Low thermal resistance coefficients. 
• Large pressure drop (high pumping powers). 
• Poor temperature uniformity. 

Liquid cooling based on microchannels 
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[1] Flow rate: 1,6·10-5 m3/s, heat flux: 

50W/cm2, standard deviation σT: ≈0,8 ºC.  

[1]   S. Riera, J. Barrau, M. Omri, L.G. Fréchette, J. Rosell, “Stepwise varying width microchannel cooling device for uniform wall 
 temperature: experimental and numerical study”, Applied Thermal Engineering, Volume 78, Pages 30-38, 2015. 



Proposal approach 
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Main objective of the project:  

Avoid overcooling  

(By tailoring the distribution of the local heat extraction 

capacity to time dependent and non-uniform heat flux 

distributions) 

Cooling device formed by a matrix 
of microfluidic cells with individual 

variable coolant flow rate. 



Description of the thermal device 
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Matrix of microfluidic cells with distributor 

• Reduce the length of the coolant flow path (reduce ΔP). 

• Locally control the flow rate in each cell through self-regulated microvalves. 

• Microfluidic cell designed for optimum heat transfer while achieving good temperature uniformity.  



Thermal microvalves 
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Self adaptive microvalve: their aperture depends on their own temperature. [2] 

[2]   M. McCarthy, N. Tiliakos, V. Modi, L.G. Fréchette, “Temperature-regulated nonlinear microvalves for self-adaptive 
 MEMS cooling”.  Journal of Microelectromechanical Systems, Volume 17, Pages 998–1009, 2008.  

Opening function of the microvalve Placement of the hot and cold positions 



Heat load scenario 
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Matrix of 16x10 microfluidic cells.  

Heat flux distribution for t3 

Time dependence of the heat loads 

• Inlet temperature: 50ºC (worst condition) 

• Maximum temperature on the chip surface < 100ºC 

(design condition)  



Temperature uniformity over time 
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Temperature distribution on the microfluidic cell 
at chip surface (when submitted to 300 W/cm2). 

Chip maximum temperature over time 

Objective of this study 

Thermo-hydraulic performance of 
the microfluidic cells matrix under 
non-uniform and time dependent 
heat load scenario.  



Flow rate over time 
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• High and constant flow rate (not tailored).   

In conventional microchannels 



Pressure drop over time 
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• High pressure drops (larger lengths).   

In conventional microchannels 



29/09/2017 11 THERMINIC 2017 

Efficiency improvement 

Microchannel MC6T 
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Overall pumping performance 
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[2]   C. S. Sharma, M. K. Tiwari, S. Zimmermann, T. Brunschwiler, G. Schlottig, B. Michel, and D. Poulikakos, “Energy efficient 
 hotspot-targeted embedded liquid cooling of electronics,” Appl. Energy, vol. 138, pp. 414–422, 2015.  
 
[1] S. Riera, J. Barrau, M. Omri, L.G. Fréchette, J. Rosell, “Stepwise varying width microchannel cooling device for uniform wall 
 temperature: experimental and numerical study”, Applied Thermal Engineering, Volume 78, Pages 30-38, 2015. 
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Manifold microchannels [2]

Tailored width microchannels. [1]

MC6T

∆𝑇𝑇𝑞𝑞=  ∆𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞′′ℎ𝑠𝑠
𝑞𝑞′′𝑏𝑏𝑏𝑏

     

[2] 



Conclusions 
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Compared with conventional microchannel technology, the 

microfluidic cells matrix achieves:  

o 89,2% of pumping power saved for a given heat 

load scenario.  

o Reduced pressure drops and total coolant flow rates.  

o Good temperature uniformity even for non-uniform and time 

dependent heat load scenarios.  
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